Para una única variable independiente X, es un modelo de la forma: o, para simplificar la notación donde ln significa logaritmo neperiano, a0 y a1 son constantes y X una variable que puede ser aleatoria o no, continúa o discreta. Este modelo se puede fácilmente generalizar para k variables independientes: Por lo tanto a0 es el logaritmo de l (probabilidad de que ocurra un evento en un intervalo de tamaño unidad) cuando todas las variables independientes son cero, y ahí es el cambio en el logaritmo de l (o logaritmo del cociente de l) cuando la variable Xi aumenta una unidad, manteniéndose constantes las demás o, dicho de otro modo, es la probabilidad de que ocurra un evento en un intervalo unidad cuando todas las variables independientes son cero y l el cociente de dicha probabilidad para un aumento de una unidad en la variable Xi (riesgo relativo). Obsérvese que, al igual que en la regresión logística, el modelo supone efectos multiplicativos, es decir, si la variable...
Ejemplo 1: El numero de tarros de cerveza pedidos en el Dick's Pub sigue una distribución de Poisson con promedio de 30 cervezas por hora. 1. Calcule la probabilidad de que se pidan exactamente 60 cervezas entre las 10 p.m. y las 12 de la noche. 2. Determine el promedio y la desviación estándar del número de cervezas pedidas entre las 9 p.m. y la 1 a.m. 3. Calcule la probabilidad de que el tiempo entre dos pedidos consecutivos sea entre 1 y 3 minutos. Solución: 1. El número de cervezas pedido entre las 10 p.m. y las 12 de la noche sigue una distribución de Poisson con parámetro 2(30) = 60. La probabilidad de que se pidan 60 cervezas entre las 10 p.m. y la medianoche es: 2. λ = 30 cervezas por hora; t = 4 horas. Entonces, el número promedio de cervezas pedidas entre las 9 p.m. y la 1 am es 4(30) = 120 cervezas. La desviación estándar del número de c...
5.3 Proceso de nacimiento o muerte. La mayor parte de los modelos elementales de colas suponen que las entradas (llegada de clientes) y las salidas (clientes que se van) del sistema ocurren de acuerdo con un proceso de nacimiento y muerte. Este importante proceso de teoría de probabilidad tiene aplicaciones en varias áreas. Sin embargo, en el contexto de la teoría de colas, el termino nacimiento se refiere a la llegada de un nuevo cliente al sistema de colas, mientras que el termino muerte se refiere a la salida del cliente servido. El estado del sistema en el tiempo t (t ≥ 0), denotado por N (t), es el número de clientes que hay en el sistema de colas en el tiempo t. El proceso de nacimiento y muerte describe en términos probabilísticos como cambia N (t) al aumentar t. En general, sostiene que los nacimientos y muertes individuales ocurren de manera aleatoria, y que sus tasas medias de ocurrencia dependen del estado actual del sistema. De manera más precisa, los supuestos d...
Comentarios
Publicar un comentario